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Near-optimal configurations in mean-field disordered systems
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We present a general technique to compute how the energy of a configuration varies as a function of its
overlap with the ground state in the case of optimization problems. Our approach is based on a generalization
of the cavity method to a system interacting with its ground state. With this technique we study the random
matching problem as well as the mean-field diluted spin glass. As a by-product of this approach we calculate
the de Almeida-Thouless transition line of the spin glass on a fixed connectivity random graph.
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[. INTRODUCTION ground state. The perturbation is chosen proportional to a
small parameter which we can tune to make the new
The study of the ground state properties of disordered@round state more or less distant from the original one: here-
systems reveals deep connections with the field of randorffter we will refer to this method as-coupling. This is ac-

combinatorial optimization: in fact, combinatorial optimiza- tually not a new ide410—14, however to our knowledge so

tion problems can be stated in terms of zero-temperature sté@r this technique has been implemented only in numerical

tistical properties of some disordered system Hamiltonian imulations. Here we show that an analytic solution is pos-
prop . : dsy . "“sible in the case of the simple random matching problem as
closely related issue is theomputational complexitpf a

. ) .__Wwell as the case of spin glasses on random graphs of fixed
given problem that can be stated in terms of the typ'cak:onnectivity. pin g grap

amount of time(e.g.,.CPU c_ycle)gthat is needed to solve the In a recent paper Aldous and Perdus] used similar
problem as a function of its sizkl]. Easy/hard thresholds techniques to study the matching probléboth in the Eu-
have been observed in different combinatorial optimizatiorcjidean and in the mean-field versionand the traveling
problems[2—5], and a currently highly debated issue is thesalesman problem, conjecturing that it is possible to classify
interplay between the onset of the phase transition and theptimization problems into different universality classes ac-
slowing down of local search algorithri8]. A better under-  cording to the dependence of the ground state solution on
standing of the organization of the lowest energy configurasmall perturbations. We will compare our results to those
tions is then a promising research program not only to relatpresented in Ref.15], and we will explain how the replica
the computational complexitef a given problem to its sta- symmetry breakingRSB) transition can be detected within
tistical mechanics counterpart but also as a guide for théhe cavity scheme. Let us point out that we will restrict our
implementation of more efficient algorithms. analysis to the level of the replica symmet(RS) approxi-
Recently, the problem of diluted mean-field spin glassegnation although in principle there is no problem to extend
received a renewed interest by means ofdheity approach the same analysis to higher level of replica symmetry break-
[7,9]. Interestingly this method turned out to be a powerfuliNg; we will d|sc_:us_s th|_s possibility and the potentlal_lntere_st
tool also to deal with combinatorial optimization problems. ©f this generalization in the context of other combinatorial
In this paper we study the problem of the organization of the®Ptimization problemse.g., SAT[2] and coloring[3)).
lowest energy configurations within this framework. Our aim The rest of the paper has the following structure. In Sec.

is to explore the way the energy of a configuration varies aé' We.St.“dy the random simple matching prob!em: after a
! : X . “description of the model we show how the cavity approach
a function of its overlap with the ground state. The naive

procedure consisting in computing the ground state, theworks in general for this model and we introduce a generali-

o : . ) >, €Y ation in order to deal witl-coupled systems. In Sec. Il we
picking at random configurations and looking at their dis-q, ) 15in how the method works in the case of the diluted spin

tance to the ground state is not computationally practicableg'ﬂass where a RSB transition is known to exist. In Sec. IV

configurations are far too numerous for this sampling to b&gme conclusions and perspectives are presented.
efficient, let alone that one has to do it for numerous in-

stances of the coupling constants in order to get relevant ||, THE RANDOM SIMPLE MATCHING PROBLEM
averaged quantities. We need to generate configurations
whose energy density is somewhat under control. The tech- A. The model

nigue we use consists in perturbing the Hamiltonian to in- Given an unoriented grap&=(V,E), whereV are the
crease the energy of the ground state, then compute the nexgrtices andE are the edges, matching Mis a set of edges
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having the property that no two edgeshNhhave an end in  where¢ plays the role of the quenched disorder andrhe
common. We say that a vertexe V is matchedf there is an  are the dynamic local variables.
edge incident tw in the matching. Otherwise the vertex is

gnma:cEeSA matching is callegerfectif every vertex ofG B. The cavity equations
is matched. ) . o

In the following we stick to the case whe@is complete The cavity equations at f!nlte Femperature for the match-
i.e., there is an edge between any two vertices, and when w89 Problem have been derived in R¢21] (a comprehen-
speak of a matching we mean a perfect matching. sive introduction to this subject is found in RE22]). Let us

We introduce a functior defined on the set of edgés  briefly reproduce the basic steps following RE23]. The
which associates a real numhbée) with each edgeec E.  Partition function for the matching problem is

The quantityl(e) can be thought of as a distance, or—

depending on the taste—as a weight, a cost, etc. We define 7= 2 exp{ — BN E niilij |, 3
the total length of a matchiny! asLy=2..ul(€). The {nj} 1<i<j=<N

matching problem consists in finding the cheapest matching,

i.e., which minimized._, . where the scaling factoN makes the free energy

A classic example is the random Euclidean matching= —In(2)/3 an extensive quantity. Following polymer theory
problem: the vertices are identified with points drawn at  [25], one first introduces a more tractable representation of
random with the flat measure in the unit hypercube of ghe partition function, which consists in mapping the match-
d-dimension Euclidean space. The cogt) of an edgee  ing problem onto a system of interacting spins. On each ver-
={v,w} is the usual Euclidean distance between the twdex i one puts a p-dimensional vector spin$§
verticesv andw. =(S, ....,SP) normalized byS?=p. Letdu be the integra-

A mean-field approximation of the Euclidean problem hastion measure on the corresponding sphere. If we define the
been widely investigatefl6—21]: the weights of the edges coupling constant3;; =exp(—BNl;;), one can check that the
are independent identically distributéili.d.) random vari-  partition function(3) can be written as
ables whose common probability distributignis defined

over an interval 0,+<[. The functionp(l) is assumed to _ N .
behave like an integer power law for small Z=lim f iH1 Sdu(S) exp(l IZJ ' TijS'Sj)- (4)
p~>0 = = =
;
p(l)~ e 1) Expanding the exponential into a power series and applying

the following property:

In the thermodynamic limiN— oo limit, the mean distance

of two nearest neighbors goes to O lik¢ °, where § lim fdM(S)Sals.“z---S“qzaq 200 (5)
=1/(r+1). Intuitively a minimum matching will only in- p—0 b ' coe

clude edges of this order of magnitude, so that the only rel-

evant feature op is its behavior around 0, i.e., tireexpo-  one can easily recover E@) from Eq. (4). Note also that
nent. The one-edge and two-edge length distributions in thishe magnetization vector of spin has componentsn®
model match the ones of the Euclidean random matching= S8 M .

problem in dimensiord=r+1 for short distances. The cavity method consists in adding a new s@jrto an
Hereafter we will concentrate on the case0. We will N-site system{S;, ...,Sy}. The partition function is calcu-

use the following conventions: there axevertices; the dis- |ated assuming that the statistical correlations in Khsite

tanceslij:lji between two vertices are i.i.d. random vari- system can be neglected. More rigorously we make use of

ables distributed foIIowing the flat distribution over an inter- the C|ustering theoremtaciﬂy assuming that the system has
val [O,N] [this corresponds to a rescaling of a fadbwith  just one pure state. We can thus encode the effect of the
respect to Eq(1)]; as a shorthand notation, we indicate thewhole system onto each spiras an effective fieldh,. The

set of these coupling constantsf@sThe length of the mini- N+ 1 -site partition function can be written as

mum matching is an extensive quantity, and the energy

(Hamiltonian of a matching can be defined equal to its N N
length. A matching\l can be unequivocally represented by a Zyy1=lim J [1 Stdu(s) exp( > hiS
contact matrixn; such that(1) nj; {0,4} andn;;=n;;; (2) p—o/ [i=1 =1
n;; =0, no self-linkage is allowed?) Vi, Ej“‘:lnijzl, each N
site ca}n_no_t be I|n_ked more thin once. Obwoqa_]y:_O _|f the +2 ToiSo-S |, (6)
edgef{i,j} is not inM, andn;; =1 if the edge{i,|} is in M. i=1
The entryn;; is called theoccupation numbeof the edge
{i,j}. The Hamiltonian of the matching then reads and can be easily computed thanks to B, giving
N -1
L= 2 nyly, (2 mo=(2 TOimi) , )
1<i<j=N i=1
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where we have used the fact thaf, the magnetization of
sitei before the addition of site 0, isti/. At the end of the
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More precisely one would like to compute the average with
respect to the coupling constants of these quantities, so let us

day we are not interested in the spin variables but in thelefine AL=AL, and q=q,. An analytic approach is pos-
solution of the matching problem. The thermal average of th&ible in the framework of the cavity method. We have two

occupation number of the edge Dis simply related to the
magnetizations by

(Noiy=mgToim. (8)

Since we will be interested eventually in the ground state(1

properties of this model we have to take tBie>co limit of
our equations. Following Ref27] it is useful to set

9

The zero-temperature limit of Eq&7) and(8), thanks to Eq.

mi=ef% for ie{l,...N.

spin systems, the 0 system and theystem, standing on the
same graph, and which are coupled. More precisely the
Hamiltonian of thee system is conditioned by the ground
state of the 0 system.

While the 0 system certainly obeys the cavity equations
0), how to deal with thes system is more problematic. A
naive approach would lead us to

(9), reduces to the following zero-temperature cavity rela-

tion:
do= min Nlg—¢;, (10
i=1,...N
Noi = O i, (11

wherei* is the index attaining the minimumi|y; — ¢; .

C. The &-coupling method

The idea of thes-coupling method in the context of the
matching problem is the following: given the sétof |;;
distances(called 0 distancgs one first finds the minimum
matching(called 0—ground statewhich is characterized by

some occupation numbeng . Then one perturbs the lengths

of the edges of the graph by adding a quartitip the edges

To= min vy, (16)
i=1,... N
where
vi=lgi—m if i#i*, (17)
vi=lgite—7 if i=i*. (18

Nevertheless these equations are wrong. They would be true
if the interactions between the old spins in thesystem of
N+1 spins were the same as in theystem ofN spins, and

this is not exactly the case: when adding the new spin to the
0 system, it gets matched to one of the old spins, whose
previous match becomes unmatched. To circumvent this dif-
ficulty, one should distinguish between matched and un-
matched spins in the 0 system. The variabjeof the ¢
system will be called; if the vertexi is matched in the 0
system, and; if it is not. The correct equations are thus

present in the 0—ground state. Formally the edge lengths be-

come the followinge distances:
|fj=|ij+snij. (12)

One solves the matching problem with thesdistances and
obtains a solution we will name—ground state, which is

expected to be different from the 0—ground state. The larger

the ¢, the stronger the O—ground state is penalized. The

Vo= min (lol_fi), (19)
i=1,... N
fo= min v, (20)
i=1,... N
where
vi=lg—fi if i#i*, (22
vi=lgite—v; if i=i* (22

e—ground state is characterized by the occupation humbers
nij. Two quantities are of interest: first the difference of The new spin in the: system gets matched to the spiff ,

length (energy between thes—ground state and the
0—ground state computed with the 0 distances:

AL{ZE (nfj—nij)lij. (13)

Second is the distanakbetween the:—ground state and the
0—ground state:

d€: 1_ q( y (14)
where the overlag, is equal to the proportion of edges in
common:

2
q€=ﬁi2<j ngn;; - (15)

the index which minimizes Eq20). The contribution to the
overlapq is & j=« . The contribution taAAL is | gjxx —lgjx.
When averaging over the disorder, in the thermodynamic
limit the quantities {q,vq,fg) and (¢; ,v;,f;) are i.i.d. ran-
dom variablegbeware thatp, v, andf on the same site are
correlated. The above Eqg10) and(19) define a stochastic
flow whose fixed point is the limit distribution ofgv,f).
We use a population algorithm similar to the one discussed in
Refs.[7,9] to solve the equations. In order to save computing
time, we use a fluctuating connectivity approximation of the
matching problem: we keep the only edges whose lengths are
smaller than a given cutoff, so that the connectivity of a
vertex is a Poisson random variable of meaWe store a
large population of N triplets (¢;,v;,f;), i=1,... N,
which we initialize randomly and update iteratively: at each
step an integek is extracted following the Poisson distribu-
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08 Y — - . fit of the form consk \e: in both cases the reduced is of
0.7 | TRUE | the order of 1. Note that a simple scaling argument shows
that the two exponents are not independent: let us assume
0.6 1 i that for e small enoughd~ €, then from Eq.(13) AL/N
05 | ] ~ Pt~ dBTYE The scaling exponent introduced by
z x Aldous and Percu$l5] is easily recovered setting= (3
9 04t 1 +1)/B. We find that the random matching features a scaling
<

exponent3=1/2 («=3), in agreement with the results
found in Ref.[15]. A completely analytic study of the
02t * 1 coupled system of Eq$19) and(20) might be done, but we
did not undertake it.

03

01y * An important remark is in order: in Ref24] Aldous in-
0 e x, s s : s s troduces and proves the followingsymptotic essential
01 02 03 04 05 06 07 08 09 1 uniguenesproperty:
d Let M be the generic element of a family of matchings

depending both ohl and on the realization of tHg ; we call
Om.min the overlap betweeM and the minimum matching,
@nddM,minz 1—qp min their distance.

For each 8<6<<1 there existg(5)>0 such that: if¥ N,
dm, min= & then

FIG. 1. AL/N vsd. The points obtained by the cavity population
algorithm with z=30, A’=200 000, and 1Diterations(CAVITY)
coincide with the measures obtained by averaging over 400
samples of total number of pointé=400 (TRUE).

tion of meanz, k random elements of the population are L 2

. . 7T
chosen and we computep§,v,,fo) following the scheme I|m|anWM>€+s(5). (23
defined by Eqgs(10), (19), and (20) limiting the search for
the min to thek extracted triplets; the resultinge(,vo, fo) In physical terms: in the thermodynamic limit, a matching

overwrites an element of the population chosen at rando"éconfiguratioﬂ which differs from the ground state by a non-
Once StOChaStiC Convergence Of the pOpU|ati0n iS aChieVe ero proportion of edges has an energy density Strict'y
we keep on iterating and compués passanthe contribu-  greater than that of the ground state. The other way round: a
tions toAL andq. Their flat averages over many steps pro-state with the same intensive energy density as the ground
vide AL andd. The output of this algorithm is presented in state can be obtained only by changing a nonextensive num-
Figs. 1 and 2. Beside we have calculated the ground state dfr of edges in the ground state. This is the proof that there
4000 matching instances usiBgossom 4software[26] and  is no RSB, at least at zero temperature. The plot in Fig. 1 can
we have tested the results against the cavity approach. In Fife seen as an illustration of this theorem.
1 we displayAL/N vs d: the cavity approach is in perfect To conclude, note that our perturbation of the energy is
agreement with the direct calculation. In Fig. 2 we displayO(N) so the information we get on the energy landscape is
the AL/N vs d curve (main panel and the best one- limited. In particular we do not explore the lowest lying ex-
parameter fit of the form constd®, while in the inset we cited configurations which have been numerically shown to
display thed vs e curve together with the best one-parameterhave an energy L~ 1/y/N andd~ 1/{/N [28]. This is a limi-
tation of our analytic approach: it is purely thermodynamic
0.1 . . . . so that we cannot have a hint at finite sj29)] effects.

Ill. THE GAUSSIAN SPIN GLASS
ON THE BETHE LATTICE

0.01 In close analogy with the preceding section, we derive

P cavity equations for the-coupling method applied to the
rd Gaussian spin glass on the Bethe lattice of connectivity
x +1, in the presence of an external field. We keep to the level
P 1 of the RS approximation. We will see that our results provide
a self-consistency check of this hypothesis which enables us
. to trace out when it is valid or not.
0'01 0'06 0.30 _ThrOl_Jghout this §ection we make thorough use of the no-
0.0001 . — = tations introduced in our previous papgd]. We refer to
0.1 02 04 0.8 Secs. Il and 1lI therein for details.
d

AL(d)/N

0.001 ¢

A. The cavity equations for a single system

FIG. 2. Main panel: Average lengthL/N vs distanced, con-
at zero temperature

tinuous line is the best fit of the form const®. Inset: Average
distanced vs coupling parameter; dotted line is the best fit of the First, following Mezard and Parisf9] we work out the
form constx e. cavity method directly at zero temperature for a single sys-
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11 12 k21 22 - 3 k1 k2 . kk k

E'(o0p)=As+--- +Ak_i21 o(hi,Jg )

k
- g;x<m,3@o++mn 0. (29)

By comparison with Eq(24) this leads to the following re-
& cursion relation:

FIG. 3. A branch of a Cayley tree of connectivity K
o . . ho= 2, Mhi,Jg i)+ hex. (30
tem of N spins o interacting through coupling constants P M TR ext

J—their set being denoted—which are i.i.d. random vari-
ables with a Gaussian distribution of mean 0 and variance 1,
in the presence of an external fidid,;.

Let us consider the merging processkdfranches rooted Now we imagine there are two spin systems sitting on the
at spinsi=1, ... k onto a new spinb illustrated in Fig. 3. N verticesA of the sameBethe lattice.
We look at how the energy of the ground state evolves under (1) The o spins obey the same Hamiltonian as in Sec. IlI
this process. Before the merging, on a given branch, we leh:
the spin at the root undetermined. Thus the ground state en-
ergy of the branch rooted at sqiis conditioned by the value Hlo]=— E JABTATE— hele oA (31)
of the spini and can be written (AB)y A

B. The cavity equations for two coupled systems

E(oi)=Ai—hioi, @4 et us callo* =(o%) the ground state of this Hamiltonian.

(2) The 7 spins obey the following perturbed Hamil-

whereA; is a constant andh; is an effective field(beware tonian, conditioned on the :

that it is not the local field Note thath; contains the effect
of the external fieldhe,;. As a consequence, the energy of
the system of thé branches before the merging is condi-  H[7|g* =~ Jag7atg—Nexiy Ta— €, TXTA.
tioned on the values of the spins.1. k, and reads AB A A

(32
E(oq, ...,00)=Ai+---+A—hjo;— - —hoy.

(25)  The choices>0 corresponds to an attractive interaction for

the 7 spin variables to the configuration®, the choicee

The system after the merging has an energy <0 to a repulsion. The ground state of Hamiltoni@2) is

namedr* = (73).
E'(o1, ... 0¢,00)=A1+ - +A—(h1+Jg 10¢) 01 We are interested in the overlap
= = (et I k09) k= NexiTo s I I
(26) a=a,= 2 o' 7, (33)

which, in order to be that of the ground state, is to be mini-Where with the svmboD - we mean the average of a generic
mized with respect torq, . .. ,0y at fixed g . This is real- Y J 9 9

: . ! . : J-dependent observabl@ ; over the different sample real-
I(Zr]?i?y'.r;de)?felz(ﬁhﬂ%Chgon,gstwesgr‘] (\)/{/r?tz(;mmh that iza}tions. The correlations between_thespins and ther

RS S L e ik spins can be accounted for by stating that the value of the
effective field acting on spimg depends on the value of spin
og, Where® is the root of an isolated branch. So we have to
store three quantities related to the rdatof a branch:(1)

|hi+3gi00|=w(h; o) TN (D o )oe, (27

where he , the effective field acting on spimg, ; (2) hg, , the effec-
tive field acting on spirrg under the condition that sping,
w(h,d)= [h+J[+[h—J| , has the valuet1; (3) hy, , the effective field acting on spin
2 79 under the condition that spimg has the value-1.
|h+J|—|h—J] 1. Iteration
ANh))=—F—, (28) : .
2 When performing the merging & branches onto a new
site, the equation for the system of thespins is exactly the
we get the appealing following form: same as in Sec. Il A:
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k
hquizl A(hi,dg i) +Next- (34) Iy
As far as ther spins are concerned, one must comphjfeas 05t
well ashg . So we assume in turn that,=+1 andoyg
=—1. This determines the values of thé : > 0
O'Ek:Sgl'(hi‘f'\]q)’iO'g)), (35) 0.5 |
and the effective field acting on spify, reads I , , , . , ,

04 -03 -02 -0.1 0 0.1 02 03 04

* k *
heo =2 Mh' ) +eah+Ney. (36) _
i=1 FIG. 4. q vs & for k=2, in the casé,,,=0.

2 Measures Things may be more convincing if one turns the external
field on. The casé.,=0.1 is plotted in Fig. 5. As the sym-

To measure the overlap, one uses the merging procedufgetry of the original Hamiltonian is lifted, the plot ofas a
of (k+1) branches onto a new vertdx: the effective field function of e<0 is no |0nger a constant equa| tol. It

acting onto spiroy is does, however, tend te-1 whene— —o because in this
limit the attracting term between the system and ther
Kt 1 system dominates the perturbed Hamilton{@8). Whene
_ —07, g goes continuously to a value which is no longer 0,
Hy= ,21 ARy )+ Pexe. 37 but s still not 1. Again the RS ansatz has problems.

We do, however, expect the RS ansatz to be valid for a
By contrast with the iteration, spiery has a determined Sufficiently high external magnetic field. Fixing=0, we let
value, the one which minimizes the energyt,=sgn(Hy).  Next iNCrease. See Fig. 6: it appears thais an increasing
This also determines the values of ta according to Eq. unction ofhe, and it saturates to 1 di;,~0.48. It is the

(35). Eventually one can compute the effective field actingS'dn that the RS ansatz becomes self-consistent ahjyye
on spinry : For k=5 we find hg,,~1.86 which is different from the

valueh,~2.1 found in Ref[30] by the analysis of numeri-
cal simulations. We believe our result is exact, and the dis-
o . crepancy can be explained by the fact that their result relies
Hw:;l AhyT L J) +eog +hex, (38)  on finite size scaling arguments with relatively poor preci-
sion.
What we got here is actually the point a&=0 of the
de Almeida-ThoulessAT) line [31] for the Gaussian spin
glass on the Bethe lattice. We had the idea that we could

k+1

whose sgn givesry,. The contribution to the overlap is
* _*
0'11,7'\1/.

C. The results

Unless otherwise stated, the following results are Kor
=2. Once again they have been obtained by a populatior
algorithm. Here the population is made o¥f triplets
(h,h*,h7). . 0

In the cases >0 we expecq to be equal to 1, regardless
of the value ofh.,,: the ground state of the perturbed Hamil-

0.5

tonian(32) should be the same as Hamiltonig1). We will 0.5 1
see that so it is. Thus the interesting regime $s0.
What we obtain in the case,,~=0 is plotted in Fig. 4. 1/
The fact thatg= —1 for everye <0 is due to the symmetry . . . . . .
of the original Hamiltonian(31) under reversal of all the 04 03 -02 -01 0 01 02 03 04

spins: the ground state of the perturbed Hamiltoniamis
=ox . More interesting is the fact that at=0, q=0: as-

suming RS one would expeqt=1. This is a sign that the FIG. 5. q vs ¢ for k=2, in the caséh,,=0.1, obtained with
RS ansatz is not self-consistent, and is to be dismissed. A/=2000 and 100 0Q¥ iterations.
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0.5 . . ; ; .
1t AT line
0.45
0.4
0.8
0.35
S sl 0.3
:0, = 0.25
T 04l 0.2
0.15
0.2 0.1 SG
0.05
0 L L L L : 0 L . L L L .
0 0.1 0.2 0.3 04 0.5 0.6 0 01 02 03 04 05 06 07 08
he):t T
FIG. 6._q vs_hexl for k=2, =0, obtained with\V=2000 and FIG. 7. The de Almeida-Thouless linéa (vs T) on the Bethe
100 000V iterations. lattice in the cas&=2, separating spin-glag§G) phase from the

paramagneti¢PM) phase. Data are obtained witti=10 000 and
generalize our approach to a nonzero temperature to detero 000V iterations. We estimate error bars to be hardly visible on
mine the whole line. this scale. Continuous line is just a guide to the eye.

D. Searching for the AT line cavity approach. This technique allows us to explore the way

It is not difficult to generalize the argument of Sec. Ill B the energy of a configuration varies as a function of its over-
(in the only cases=0) to a nonzero temperature. We con- lap with the ground state and more generally to address the
sider two noninteracting systems, thiespins and the- spins,  problem of the organization of the lowest energy configura-
standing on thesameBethe lattice and obeying theame tions. The lesson we get applying this method to the case of
Hamiltonian(31). Solving this double system at the level of the simple random matching problem is very clear: the space
RS is easy: we use the population algorithm of Sec. lll Aof the lowest energy configurations is organized such that
adapted to follow simultaneously two populations. A crucialtheir energy difference with respect to their distance from the
point is that whenever one randomly extracts sites or couground state scales as=/Ne«d3. A situation like this, or in
pling constants, they are tlsamefor the o population and  general wheneveAE/Nx=d® with «>0, is related to the
the 7 population. This procedure enables us to measure thgroperty of replica symmetry of the system, which implies

average overlap between the two systems: Aldous asymptotic essential uniquenga®perty[24].
A similar study presented in Reff15] suggests that this
qEq_j:—waTA)_ (39  Property is also shared by the minimum spanning tree prob-

lem, the minimum matching problem in Euclidean dimen-
The criterion for the RS ansatz to be self-consistentis ~ siond=1, and the traveling salesman problem also in Eu-
clidean dimensiond=1 (all with «=2). Minimum
— matching problem and traveling salesman problemdin
q=mx, (40 =23 are instead characterized by=3 as the mean-field
) o ) ) matching problem we have studied.
wheremp is the local magnetization mgasured either indghe A simple case with naasymptotic essential uniqueness
system or in ther system(they are obviously equal _ property is the spin glass on a fixed connectivity random
Given a value ofT, we run the algorithm for increasing graph studied in Sec. Ill. Indeed our computation based on
values ofheyr, SO as to determine its value,(T) beyond  the RS assumption yields that lim,-d#0 which is a
which condition(40) holds. The plothg,(T) is the AT line,  physical nonsense since the model has a unique ground state
see Fig. 7. To our knowledge it is the first time the AT line (the couplings are GaussjaThis inconsistency tells us not
has been obtained for a spin glass on the Bethe lattice. Twenly that—as we already know aft¢7,9]—the cavity ap-
predictions made in Ref32] can be checked. First, the criti- proximation must be improved in order to take into account
cal temperaturd ., such thah¢,(T.) =0, is the solution of the presence of many states but also gives us a practical tool
the equatiork tantf(J/T.)=1: in the casé&=2 this givesT,  to probe the phase space for the onset of full RSB: the search
=0.748. Second, close f®,, h,(T) should behave like for the AT line in the case of the spin glass on a fixed con-

(T.—T)%2 which a numerical fit of our data confirms. nectivity random graph is a simple and instructive example.
A very interesting issue is the generalization of the
IV. CONCLUSIONS AND PERSPECTIVES e-coupling method to the case where th&mptotic essen-

tial uniquenessloes not hold. In the last year a compact and
In this paper we presented the derivation and implemenefficient formalism has been developed to apply the cavity
tation of the e-coupling method in the framework of the method to SAT and coloring problenig,3], at the level of
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1RSB, evidentiating a clustering transition. This clusteringcluster mean distance is, could be addressed within this for-
transition consists in the sudden appearance of an exponemalism.

tial number of metastable states, which—intuitively—cause

local search algorithm to get stuck. We believe that it is ACKNOWLEDGMENTS
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