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Near-optimal configurations in mean-field disordered systems

A. Pagnani
Laboratoire de Physique The´orique et Mode`les Statistiques, Baˆtiment 100, Universite´ Paris–Sud, F-91405 Orsay, France

G. Parisi
Dipartimento di Fisica, SMC, INFM, and INFN, Universita` di Roma 1 La Sapienza, Piazzale Aldo Moro, 2-00185 Roma, Italy

M. Ratiéville
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We present a general technique to compute how the energy of a configuration varies as a function of its
overlap with the ground state in the case of optimization problems. Our approach is based on a generalization
of the cavity method to a system interacting with its ground state. With this technique we study the random
matching problem as well as the mean-field diluted spin glass. As a by-product of this approach we calculate
the de Almeida-Thouless transition line of the spin glass on a fixed connectivity random graph.
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I. INTRODUCTION

The study of the ground state properties of disorde
systems reveals deep connections with the field of rand
combinatorial optimization: in fact, combinatorial optimiz
tion problems can be stated in terms of zero-temperature
tistical properties of some disordered system Hamiltonian
closely related issue is thecomputational complexityof a
given problem that can be stated in terms of the typi
amount of time~e.g., CPU cycles! that is needed to solve th
problem as a function of its size@1#. Easy/hard threshold
have been observed in different combinatorial optimizat
problems@2–5#, and a currently highly debated issue is t
interplay between the onset of the phase transition and
slowing down of local search algorithms@6#. A better under-
standing of the organization of the lowest energy configu
tions is then a promising research program not only to re
the computational complexityof a given problem to its sta
tistical mechanics counterpart but also as a guide for
implementation of more efficient algorithms.

Recently, the problem of diluted mean-field spin glas
received a renewed interest by means of thecavity approach
@7,9#. Interestingly this method turned out to be a power
tool also to deal with combinatorial optimization problem
In this paper we study the problem of the organization of
lowest energy configurations within this framework. Our a
is to explore the way the energy of a configuration varies
a function of its overlap with the ground state. The na
procedure consisting in computing the ground state, t
picking at random configurations and looking at their d
tance to the ground state is not computationally practica
configurations are far too numerous for this sampling to
efficient, let alone that one has to do it for numerous
stances of the coupling constants in order to get relev
averaged quantities. We need to generate configurat
whose energy density is somewhat under control. The te
nique we use consists in perturbing the Hamiltonian to
crease the energy of the ground state, then compute the
1063-651X/2003/68~4!/046706~8!/$20.00 68 0467
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ground state. The perturbation is chosen proportional t
small parameter« which we can tune to make the ne
ground state more or less distant from the original one: he
after we will refer to this method as«-coupling. This is ac-
tually not a new idea@10–14#, however to our knowledge so
far this technique has been implemented only in numer
simulations. Here we show that an analytic solution is p
sible in the case of the simple random matching problem
well as the case of spin glasses on random graphs of fi
connectivity.

In a recent paper Aldous and Percus@15# used similar
techniques to study the matching problem~both in the Eu-
clidean and in the mean-field versions! and the traveling
salesman problem, conjecturing that it is possible to clas
optimization problems into different universality classes a
cording to the dependence of the ground state solution
small perturbations. We will compare our results to tho
presented in Ref.@15#, and we will explain how the replica
symmetry breaking~RSB! transition can be detected withi
the cavity scheme. Let us point out that we will restrict o
analysis to the level of the replica symmetric~RS! approxi-
mation although in principle there is no problem to exte
the same analysis to higher level of replica symmetry bre
ing; we will discuss this possibility and the potential intere
of this generalization in the context of other combinator
optimization problems~e.g., SAT@2# and coloring@3#!.

The rest of the paper has the following structure. In S
II we study the random simple matching problem: after
description of the model we show how the cavity approa
works in general for this model and we introduce a gener
zation in order to deal with«-coupled systems. In Sec. III w
explain how the method works in the case of the diluted s
glass where a RSB transition is known to exist. In Sec.
some conclusions and perspectives are presented.

II. THE RANDOM SIMPLE MATCHING PROBLEM

A. The model

Given an unoriented graphG5(V,E), whereV are the
vertices andE are the edges, amatching Mis a set of edges
©2003 The American Physical Society06-1
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having the property that no two edges inM have an end in
common. We say that a vertexvPV is matchedif there is an
edge incident tov in the matching. Otherwise the vertex
unmatched. A matching is calledperfectif every vertex ofG
is matched.

In the following we stick to the case whereG is complete,
i.e., there is an edge between any two vertices, and when
speak of a matching we mean a perfect matching.

We introduce a functionl defined on the set of edgesE
which associates a real numberl (e) with each edgeePE.
The quantity l (e) can be thought of as a distance, or
depending on the taste—as a weight, a cost, etc. We de
the total length of a matchingM as LM5(ePMl (e). The
matching problem consists in finding the cheapest match
i.e., which minimizesLM .

A classic example is the random Euclidean match
problem: the vertices are identified withN points drawn at
random with the flat measure in the unit hypercube o
d-dimension Euclidean space. The costl (e) of an edgee
5$v,w% is the usual Euclidean distance between the t
verticesv andw.

A mean-field approximation of the Euclidean problem h
been widely investigated@16–21#: the weights of the edge
are independent identically distributed~i.i.d.! random vari-
ables whose common probability distributionr is defined
over an interval@0,1`@ . The functionr( l ) is assumed to
behave like an integer power law for smalll:

r~ l !;
l r

r !
. ~1!

In the thermodynamic limitN→` limit, the mean distance
of two nearest neighbors goes to 0 likeN2d, where d
51/(r 11). Intuitively a minimum matching will only in-
clude edges of this order of magnitude, so that the only
evant feature ofr is its behavior around 0, i.e., ther expo-
nent. The one-edge and two-edge length distributions in
model match the ones of the Euclidean random match
problem in dimensiond5r 11 for short distances.

Hereafter we will concentrate on the caser 50. We will
use the following conventions: there areN vertices; the dis-
tancesl i j 5 l j i between two vertices are i.i.d. random va
ables distributed following the flat distribution over an inte
val @0,N# @this corresponds to a rescaling of a factorN with
respect to Eq.~1!#; as a shorthand notation, we indicate t
set of these coupling constants as,. The length of the mini-
mum matching is an extensive quantity, and the ene
~Hamiltonian! of a matching can be defined equal to
length. A matchingM can be unequivocally represented by
contact matrixni j such that~1! ni j P$0,1% andni j 5nji ; ~2!
nii 50, no self-linkage is allowed;~3! ; i , ( j 51

N ni j 51, each
site cannot be linked more than once. Obviouslyni j 50 if the
edge$ i , j % is not in M, andni j 51 if the edge$ i , j % is in M.
The entryni j is called theoccupation numberof the edge
$ i , j %. The Hamiltonian of the matching then reads

L,5 (
1< i , j <N

ni j l i j , ~2!
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where, plays the role of the quenched disorder and theni j
are the dynamic local variables.

B. The cavity equations

The cavity equations at finite temperature for the mat
ing problem have been derived in Ref.@21# ~a comprehen-
sive introduction to this subject is found in Ref.@22#!. Let us
briefly reproduce the basic steps following Ref.@23#. The
partition function for the matching problem is

Z5 (
$ni j %

expS 2bN (
1< i , j <N

ni j l i j D , ~3!

where the scaling factorN makes the free energyF
52 ln(Z)/b an extensive quantity. Following polymer theo
@25#, one first introduces a more tractable representation
the partition function, which consists in mapping the matc
ing problem onto a system of interacting spins. On each v
tex i one puts a p-dimensional vector spin Si

5(Si
1 , . . . ,Si

p) normalized bySi
25p. Let dm be the integra-

tion measure on the corresponding sphere. If we define
coupling constantsTi j 5exp(2bNlij), one can check that the
partition function~3! can be written as

Z5 lim
p→0

E F)
i 51

N

Si
1dm~Si !GexpS (

1< i , j <N
Ti j Si•Sj D . ~4!

Expanding the exponential into a power series and apply
the following property:

lim
p→0

E dm~Si !Si
a1Si

a2
•••Si

aq5dq,2da1 ,a2
, ~5!

one can easily recover Eq.~3! from Eq. ~4!. Note also that
the magnetization vector of spini has componentsmi

a

5da,1mi .
The cavity method consists in adding a new spinS0 to an

N-site system$S1 , . . . ,SN%. The partition function is calcu-
lated assuming that the statistical correlations in theN-site
system can be neglected. More rigorously we make use
the clustering theorem, tacitly assuming that the system ha
just one pure state. We can thus encode the effect of
whole system onto each spini as an effective fieldhi . The
N11-site partition function can be written as

ZN115 lim
p→0

E F)
i 51

N

Si
1dm~Si !GexpS (

i 51

N

hiSi

1(
i 51

N

T0iS0•Si D , ~6!

and can be easily computed thanks to Eq.~5!, giving

m05S (
i 51

N

T0imi D 21

, ~7!
6-2
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where we have used the fact thatmi , the magnetization of
site i before the addition of site 0, is 1/hi . At the end of the
day we are not interested in the spin variables but in
solution of the matching problem. The thermal average of
occupation number of the edge 0 –i is simply related to the
magnetizations by

^n0i&5m0T0imi
c . ~8!

Since we will be interested eventually in the ground st
properties of this model we have to take theb→` limit of
our equations. Following Ref.@27# it is useful to set

mi5ebf i for i P$1, . . . ,N%. ~9!

The zero-temperature limit of Eqs.~7! and~8!, thanks to Eq.
~9!, reduces to the following zero-temperature cavity re
tion:

f05 min
i 51, . . . ,N

Nl0i2f i , ~10!

n0i5d i ,i* , ~11!

wherei * is the index attaining the minimumNl0i2f i .

C. The «-coupling method

The idea of the«-coupling method in the context of th
matching problem is the following: given the set, of l i j
distances~called 0 distances!, one first finds the minimum
matching~called 0–ground state!, which is characterized by
some occupation numbersni j . Then one perturbs the length
of the edges of the graph by adding a quantity« to the edges
present in the 0–ground state. Formally the edge lengths
come the following« distances:

l i j
« 5 l i j 1«ni j . ~12!

One solves the matching problem with these« distances and
obtains a solution we will name« –ground state, which is
expected to be different from the 0–ground state. The la
the «, the stronger the 0–ground state is penalized. T
« –ground state is characterized by the occupation num
ni j

« . Two quantities are of interest: first the difference
length ~energy! between the « –ground state and th
0–ground state computed with the 0 distances:

DL,5(
i , j

~ni j
« 2ni j !l i j . ~13!

Second is the distanced between the« –ground state and th
0–ground state:

d,512q, , ~14!

where the overlapq, is equal to the proportion of edges
common:

q,5
2

N (
i , j

ni j
« ni j . ~15!
04670
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More precisely one would like to compute the average w
respect to the coupling constants of these quantities, so le
define DL5DL, and q5q,. An analytic approach is pos
sible in the framework of the cavity method. We have tw
spin systems, the 0 system and the« system, standing on the
same graph, and which are coupled. More precisely
Hamiltonian of the« system is conditioned by the groun
state of the 0 system.

While the 0 system certainly obeys the cavity equatio
~10!, how to deal with the« system is more problematic. A
naiveapproach would lead us to

t05 min
i 51, . . . ,N

g i , ~16!

where

g i5 l 0i2t i if iÞ i * , ~17!

g i5 l 0i1e2t i if i 5 i * . ~18!

Nevertheless these equations are wrong. They would be
if the interactions between the old spins in the« system of
N11 spins were the same as in the« system ofN spins, and
this is not exactly the case: when adding the new spin to
0 system, it gets matched to one of the old spins, wh
previous match becomes unmatched. To circumvent this
ficulty, one should distinguish between matched and
matched spins in the 0 system. The variablet i of the «
system will be calledf i if the vertex i is matched in the 0
system, andv i if it is not. The correct equations are thus

v05 min
i 51, . . . ,N

~ l 0i2 f i !, ~19!

f 05 min
i 51, . . . ,N

g i , ~20!

where

g i5 l 0i2 f i if iÞ i * , ~21!

g i5 l 0i1e2v i if i 5 i * . ~22!

The new spin in the« system gets matched to the spini ** ,
the index which minimizes Eq.~20!. The contribution to the
overlapq is d i* ,i** . The contribution toDL is l 0i** 2 l 0i* .

When averaging over the disorder, in the thermodynam
limit the quantities (w0 ,v0 , f 0) and (w i ,v i , f i) are i.i.d. ran-
dom variables~beware thatw, v, andf on the same site are
correlated!. The above Eqs.~10! and~19! define a stochastic
flow whose fixed point is the limit distribution of (w,v, f ).
We use a population algorithm similar to the one discusse
Refs.@7,9# to solve the equations. In order to save comput
time, we use a fluctuating connectivity approximation of t
matching problem: we keep the only edges whose lengths
smaller than a given cutoffz, so that the connectivity of a
vertex is a Poisson random variable of meanz. We store a
large population ofN triplets (w i ,v i , f i), i 51, . . . ,N,
which we initialize randomly and update iteratively: at ea
step an integerk is extracted following the Poisson distribu
6-3
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tion of meanz, k random elements of the population a
chosen and we compute (w0 ,v0 , f 0) following the scheme
defined by Eqs.~10!, ~19!, and ~20! limiting the search for
the min to thek extracted triplets; the resulting (w0 ,v0 , f 0)
overwrites an element of the population chosen at rand
Once stochastic convergence of the population is achie
we keep on iterating and computeen passantthe contribu-
tions toDL andq. Their flat averages over many steps pr
vide DL and d̄. The output of this algorithm is presented
Figs. 1 and 2. Beside we have calculated the ground sta
4000 matching instances usingBLOSSOM 4software@26# and
we have tested the results against the cavity approach. In
1 we displayDL/N vs d: the cavity approach is in perfec
agreement with the direct calculation. In Fig. 2 we disp
the DL/N vs d curve ~main panel! and the best one
parameter fit of the form const3d3, while in the inset we
display thed vs e curve together with the best one-parame

FIG. 1. DL/N vs d. The points obtained by the cavity populatio
algorithm with z530, N5200 000, and 108 iterations~CAVITY !
coincide with the measures obtained by averaging over 4
samples of total number of pointsN5400 ~TRUE!.

FIG. 2. Main panel: Average lengthDL/N vs distanced, con-
tinuous line is the best fit of the form const3d3. Inset: Average
distanced vs coupling parametere; dotted line is the best fit of the
form const3Ae.
04670
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fit of the form const3Ae: in both cases the reducedx2 is of
the order of 1. Note that a simple scaling argument sho
that the two exponents are not independent: let us ass
that for e small enoughd;eb, then from Eq.~13! DL/N
;eb11;d(b11)/b. The scaling exponenta introduced by
Aldous and Percus@15# is easily recovered settinga5(b
11)/b. We find that the random matching features a scal
exponent b51/2 (a53), in agreement with the result
found in Ref. @15#. A completely analytic study of the
coupled system of Eqs.~19! and~20! might be done, but we
did not undertake it.

An important remark is in order: in Ref.@24# Aldous in-
troduces and proves the followingasymptotic essentia
uniquenessproperty:

Let M be the generic element of a family of matchin
depending both onN and on the realization of thel i j ; we call
qM ,min the overlap betweenM and the minimum matching
anddM ,min512qM ,min their distance.

For each 0,d,1 there exists«(d).0 such that: if;N,
dM ,min>d then

lim infN

LM

N
>

p2

6
1«~d!. ~23!

In physical terms: in the thermodynamic limit, a matchin
~configuration! which differs from the ground state by a non
zero proportion of edges has an energy density stri
greater than that of the ground state. The other way roun
state with the same intensive energy density as the gro
state can be obtained only by changing a nonextensive n
ber of edges in the ground state. This is the proof that th
is no RSB, at least at zero temperature. The plot in Fig. 1
be seen as an illustration of this theorem.

To conclude, note that our perturbation of the energy
O(N) so the information we get on the energy landscape
limited. In particular we do not explore the lowest lying e
cited configurations which have been numerically shown
have an energyDL;1/AN andd;1/AN @28#. This is a limi-
tation of our analytic approach: it is purely thermodynam
so that we cannot have a hint at finite size@29# effects.

III. THE GAUSSIAN SPIN GLASS
ON THE BETHE LATTICE

In close analogy with the preceding section, we der
cavity equations for the«-coupling method applied to the
Gaussian spin glass on the Bethe lattice of connectivitk
11, in the presence of an external field. We keep to the le
of the RS approximation. We will see that our results prov
a self-consistency check of this hypothesis which enable
to trace out when it is valid or not.

Throughout this section we make thorough use of the
tations introduced in our previous paper@8#. We refer to
Secs. II and III therein for details.

A. The cavity equations for a single system
at zero temperature

First, following Mézard and Parisi@9# we work out the
cavity method directly at zero temperature for a single s

0

6-4
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tem of N spins s interacting through coupling constan
J—their set being denotedJ—which are i.i.d. random vari-
ables with a Gaussian distribution of mean 0 and varianc
in the presence of an external fieldhext .

Let us consider the merging process ofk branches rooted
at spinsi 51, . . . ,k onto a new spinF illustrated in Fig. 3.
We look at how the energy of the ground state evolves un
this process. Before the merging, on a given branch, we
the spin at the root undetermined. Thus the ground state
ergy of the branch rooted at spini is conditioned by the value
of the spini and can be written

E~s i !5Ai2his i , ~24!

whereAi is a constant andhi is an effective field~beware
that it is not the local field!. Note thathi contains the effect
of the external fieldhext . As a consequence, the energy
the system of thek branches before the merging is cond
tioned on the values of the spins 1, . . . ,k, and reads

E~s1 , . . . ,sk!5A11•••1Ak2h1s12•••2hksk .
~25!

The system after the merging has an energy

E8~s1 , . . . ,sk ,sF!5A11•••1Ak2~h11JF,1sF!s1

2•••2~hk1JF,ksF!sk2hextsF ,

~26!

which, in order to be that of the ground state, is to be m
mized with respect tos1 , . . . ,sk at fixedsF . This is real-
ized by independently choosing the sign of eachs i such that
(hi1JF,isF)s i5uhi1JF,isFu. As we can write

uhi1JF,isFu5v~hi ,JF,i !1l~hi ,JF,i !sF , ~27!

where

v~h,J!5
uh1Ju1uh2Ju

2
,

l~h,J!5
uh1Ju2uh2Ju

2
, ~28!

we get the appealing following form:

FIG. 3. A branch of a Cayley tree of connectivityk.
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E8~sF!5A11•••1Ak2(
i 51

k

v~hi ,JF,i !

2S (
i 51

k

l~hi ,JF,i !1hextDsF . ~29!

By comparison with Eq.~24! this leads to the following re-
cursion relation:

hF5(
i 51

k

l~hi ,JF,i !1hext . ~30!

B. The cavity equations for two coupled systems

Now we imagine there are two spin systems sitting on
N verticesA of the sameBethe lattice.

~1! The s spins obey the same Hamiltonian as in Sec.
A:

H@s#52 (
^A,B&

JA,BsAsB2hext(
A

sA . ~31!

Let us calls* 5(sA* ) the ground state of this Hamiltonian
~2! The t spins obey the following perturbed Hami

tonian, conditioned on thesA* :

H@tus* #52(
A,B

JA,BtAtB2hext(
A

tA2e(
A

sA* tA .

~32!

The choice«.0 corresponds to an attractive interaction f
the t spin variables to the configurations* , the choice«
,0 to a repulsion. The ground state of Hamiltonian~32! is
namedt* 5(tA* ).

We are interested in the overlap

q[qJ5
1

N (
i

s i* t i* , ~33!

where with the symbolOJ we mean the average of a gener
J-dependent observableOJ over the different sample real
izations. The correlations between thes spins and thet
spins can be accounted for by stating that the value of
effective field acting on spintF depends on the value of spi
sF , whereF is the root of an isolated branch. So we have
store three quantities related to the rootF of a branch:~1!
hF , the effective field acting on spinsF ; ~2! hF

1 , the effec-
tive field acting on spintF under the condition that spinsF

has the value11; ~3! hF
2 , the effective field acting on spin

tF under the condition that spinsF has the value21.

1. Iteration

When performing the merging ofk branches onto a new
site, the equation for the system of thes spins is exactly the
same as in Sec. III A:
6-5
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hF5(
i 51

k

l~hi ,JF,i !1hext . ~34!

As far as thet spins are concerned, one must computehF
1 as

well as hF
2 . So we assume in turn thatsF511 and sF

521. This determines the values of thes i* :

s i* 5sgn~hi1JF,isF* !, ~35!

and the effective field acting on spintF reads

h
F

s0* 5(
i 51

k

l~h
i

s i* ,Ji !1«sF* 1hext . ~36!

2. Measures

To measure the overlap, one uses the merging proce
of (k11) branches onto a new vertexC: the effective field
acting onto spinsC is

HC5 (
i 51

k11

l~hi ,JC,i !1hext . ~37!

By contrast with the iteration, spinsC has a determined
value, the one which minimizes the energy:sC* 5sgn(HC).
This also determines the values of thes i* according to Eq.
~35!. Eventually one can compute the effective field acti
on spintC :

HC5 (
i 51

k11

l~h
i

s i* ,Ji !1«s0* 1hext , ~38!

whose sgn givestC* . The contribution to the overlap i
sC* tC* .

C. The results

Unless otherwise stated, the following results are fok
52. Once again they have been obtained by a popula
algorithm. Here the population is made ofN triplets
(h,h1,h2).

In the case«.0 we expectq to be equal to 1, regardles
of the value ofhext : the ground state of the perturbed Ham
tonian~32! should be the same as Hamiltonian~31!. We will
see that so it is. Thus the interesting regime is«<0.

What we obtain in the casehext50 is plotted in Fig. 4.
The fact thatq521 for every«,0 is due to the symmetry
of the original Hamiltonian~31! under reversal of all the
spins: the ground state of the perturbed Hamiltonian istA*
5sA* . More interesting is the fact that at«50, q50: as-
suming RS one would expectq51. This is a sign that the
RS ansatz is not self-consistent, and is to be dismissed.
04670
re

n

Things may be more convincing if one turns the exter
field on. The casehext50.1 is plotted in Fig. 5. As the sym
metry of the original Hamiltonian is lifted, the plot ofq as a
function of «,0 is no longer a constant equal to21. It
does, however, tend to21 when «→2` because in this
limit the attracting term between thes system and thet
system dominates the perturbed Hamiltonian~32!. When «
→02 , q goes continuously to a value which is no longer
but is still not 1. Again the RS ansatz has problems.

We do, however, expect the RS ansatz to be valid fo
sufficiently high external magnetic field. Fixing«50, we let
hext increase. See Fig. 6: it appears thatq is an increasing
function of hext and it saturates to 1 athext

c ;0.48. It is the
sign that the RS ansatz becomes self-consistent abovehext

c .
For k55 we find hext

c ;1.86 which is different from the
valuehext

c ;2.1 found in Ref.@30# by the analysis of numeri-
cal simulations. We believe our result is exact, and the d
crepancy can be explained by the fact that their result re
on finite size scaling arguments with relatively poor pre
sion.

What we got here is actually the point atT50 of the
de Almeida-Thouless~AT! line @31# for the Gaussian spin
glass on the Bethe lattice. We had the idea that we co

FIG. 4. q vs « for k52, in the casehext50.

FIG. 5. q vs « for k52, in the casehext50.1, obtained with
N52000 and 100 000N iterations.
6-6
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generalize our approach to a nonzero temperature to d
mine the whole line.

D. Searching for the AT line

It is not difficult to generalize the argument of Sec. III
~in the only case«50) to a nonzero temperature. We co
sider two noninteracting systems, thes spins and thet spins,
standing on thesameBethe lattice and obeying thesame
Hamiltonian~31!. Solving this double system at the level
RS is easy: we use the population algorithm of Sec. II
adapted to follow simultaneously two populations. A cruc
point is that whenever one randomly extracts sites or c
pling constants, they are thesamefor the s population and
the t population. This procedure enables us to measure
average overlap between the two systems:

q[qJ5^sA&^tA&. ~39!

The criterion for the RS ansatz to be self-consistent is

q5mA
2 , ~40!

wheremA is the local magnetization measured either in thes
system or in thet system~they are obviously equal!.

Given a value ofT, we run the algorithm for increasin
values ofhext , so as to determine its valuehext

c (T) beyond
which condition~40! holds. The plothext

c (T) is the AT line,
see Fig. 7. To our knowledge it is the first time the AT lin
has been obtained for a spin glass on the Bethe lattice.
predictions made in Ref.@32# can be checked. First, the crit
cal temperatureTc , such thathext

c (Tc)50, is the solution of
the equationk tanh2(J/Tc)51: in the casek52 this givesTc

50.748. Second, close toTc , hext
c (T) should behave like

(Tc2T)3/2, which a numerical fit of our data confirms.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we presented the derivation and implem
tation of the «-coupling method in the framework of th

FIG. 6. q vs hext for k52, «50, obtained withN52000 and
100 000N iterations.
04670
er-

l
-

he

o

-

cavity approach. This technique allows us to explore the w
the energy of a configuration varies as a function of its ov
lap with the ground state and more generally to address
problem of the organization of the lowest energy configu
tions. The lesson we get applying this method to the cas
the simple random matching problem is very clear: the sp
of the lowest energy configurations is organized such t
their energy difference with respect to their distance from
ground state scales asDE/N}d3. A situation like this, or in
general wheneverDE/N}da with a.0, is related to the
property of replica symmetry of the system, which impli
Aldous asymptotic essential uniquenessproperty@24#.

A similar study presented in Ref.@15# suggests that this
property is also shared by the minimum spanning tree pr
lem, the minimum matching problem in Euclidean dime
sion d51, and the traveling salesman problem also in E
clidean dimension d51 ~all with a52). Minimum
matching problem and traveling salesman problem ind
52,3 are instead characterized bya53 as the mean-field
matching problem we have studied.

A simple case with noasymptotic essential uniquene
property is the spin glass on a fixed connectivity rand
graph studied in Sec. III. Indeed our computation based
the RS assumption yields that lime→02dÞ0 which is a
physical nonsense since the model has a unique ground
~the couplings are Gaussian!. This inconsistency tells us no
only that—as we already know after@7,9#—the cavity ap-
proximation must be improved in order to take into accou
the presence of many states but also gives us a practical
to probe the phase space for the onset of full RSB: the se
for the AT line in the case of the spin glass on a fixed co
nectivity random graph is a simple and instructive examp

A very interesting issue is the generalization of t
«-coupling method to the case where theasymptotic essen
tial uniquenessdoes not hold. In the last year a compact a
efficient formalism has been developed to apply the cav
method to SAT and coloring problems@2,3#, at the level of

FIG. 7. The de Almeida-Thouless line (h vs T) on the Bethe
lattice in the casek52, separating spin-glass~SG! phase from the
paramagnetic~PM! phase. Data are obtained withN510 000 and
10 000N iterations. We estimate error bars to be hardly visible
this scale. Continuous line is just a guide to the eye.
6-7



ing
n
s
i

n
t
e
u
te

for-

ng
ro-

tial
7,
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1RSB, evidentiating a clustering transition. This cluster
transition consists in the sudden appearance of an expo
tial number of metastable states, which—intuitively—cau
local search algorithm to get stuck. We believe that it
possible to generalize the«-coupling method presented i
this paper to the 1RSB level, although at a higher compu
tional cost. This could give interesting results on the inn
mechanism of the clustering of states. Open problems, s
as how large a single cluster could be and what the in
ev
i,

an

. E

04670
en-
e
s

a-
r
ch
r-

cluster mean distance is, could be addressed within this
malism.
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